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Sequence Problems Optimisations & Visualisations

The universe is a giant model of interleaving patterns that - Dropout and L1/L2 were investigated. giaj;nD;\’ccog/i’;gy lable writes and  _ The DNC was optimised for data structure and real

can be represented as sequences. - Scaling over a distributed GPGPU cluster world problems demonstrating versatility.
Understanding sequences is key to artificial intelligence, facilitated complex model training (Fig. 2). - In some cases the DNC outperformed an LSTM [3]
enabling human-like inference models that draw on the past - Lookup by value is core to memory access. 2 reaching 100% accuracy and visualisations validated the
to influence subsequent decisions. Application areas include: We innovated a masked lookup to form key inner mechanisms (Fig. 3).

Natural Language Processing value lookup (Fig. 4).

Fig. 2: Distributed learning architecture.

- The penny drop curve was coined describing sudden

Fig. 4: -SNE 3D visualisation of the DNC memory learning underpinning algorithmic learning (Fig. 5).
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- Profiling on a high performance cluster achieves near
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linear speed up (Fig. 6).
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Fig. b: Learning a copy task over Fig. 6: Speed up over a distributed
various models. Penn y drop circled. architecture.
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Problems are embedded for feeding as followsmmm
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Q DeepMind pioneered the Neural Turing Machines (NTM) [1] proceeded by the Differential Neural Computer (DNC) [2] that bridged T iy - il (; il
—— LSTM (64) / [ 4
Turing Machines [4] using deep neural networks to train an algorithm. "0 a0 sobo 7s0 b0 12300 13600 17300 2o 3 2 > T
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Fig. 1 displays the end-to-end pipeline of a DNC. It begins by embedding the problem sequentially for feeding iteratively to a controller that

executes operations on internal state before regressing output. COHC]USiOIl

The controller can be feed-forward or recurrent neural network with optimisation being an open problem we investigated. - Validated the DNC against state of the art, highlighting
Fig. 1: DNC Architecture end-to-end pipeline for the Rubik’s Cube task. merits of each.
- Optimised as a scalable system, identifying and
Controller Output: y exploring bottlenecks
Input' X , Output Neural Empty | Answer P 8 :
Data Empty ‘[ : NtWOFk Cheers, here’s ‘[ ; 7 ; > l P - Visualised the inner workings of the models.
; /; /. ; ; / ; / the OW - Explored innovative ideas to improve the models
Embed into Time-stept \ Time-stept forming a new state of the art.
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