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The universe is a giant model of interleaving patterns that
can be represented as sequences.
Understanding	sequences	is	key	to	artificial	 intelligence,	
enabling	human-like	 inference	models	that	draw	on	the	past	
to	influence	subsequent	decisions.	Application	 areas	include:
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pioneered the Neural Turing Machines (NTM) [1] proceeded by the Differential Neural Computer (DNC) [2] that bridged
Turing Machines [4] using deep neural networks to train an algorithm.
Fig. 1 displays the end-to-end pipeline of a DNC. It begins by embedding the problem sequentially for feeding iteratively to a controller that
executes operations on internal state before regressing output.
The controller can be feed-forward or recurrent neural network with optimisation being an open problem we investigated. - Validated the DNC against state of the art, highlighting

merits of each.
- Optimised as a scalable system, identifying and
exploring bottlenecks.

- Visualised the inner workings of the models.
- Explored innovative ideas to improve the models
forming a new state of the art.
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Fig. 1: DNC Architecture end-to-end pipeline for the Rubik’s Cube task.
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Optimisations & Visualisations
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- Dropout and L1/L2 were investigated.
- Scaling over a distributed GPGPU cluster
facilitated complex model training (Fig. 2).

- Lookup by value is core to memory access.
We innovated a masked lookup to form key
value lookup (Fig. 4).
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Fig. 2: Distributed learning architecture.
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Fig. 6: Speed up over a distributed
architecture.

Fig. 5: Learning a copy task over
various models. Penny drop circled.

- Natural Language Processing
- Computer Vision
- Healthcare
- Strategic Reasoning
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Problems are embedded for feeding as follows:

- The DNC was optimised for data structure and real
world problems demonstrating versatility.

- In some cases the DNC outperformed an LSTM [3]
reaching 100% accuracy and visualisations validated the
inner mechanisms (Fig. 3).

- The penny drop curve was coined describing sudden
learning underpinning algorithmic learning (Fig. 5).

- Profiling on a high performance cluster achieves near
linear speed up (Fig. 6).

Fig. 3: DNC memory table writes and
reads on a copy task.
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Fig. 4: t-SNE 3D visualisation of the DNC memory
matrix on a copy task.
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