
Principles and Applications of
Differential Neural Computers

Student Name: Alastair Breeze
Supervisor Name: Dr Stephen McGough, Dr Noura Al Moubayed

Submitted as part of the degree of Computer Science MEng to the

Board of Examiners in the School of Engineering and Computing Sciences, Durham University
02.05.2017

Abstract —
Context / Background — Memory is a core mechanism that facilitates intelligence in a highly contextual
universe, allowing the entity to draw on past experiences to influence the subsequent. Sequence problems
deal with ordered data as seen everywhere in the natural world. In artificial intelligence research there have
been advances in machine learning incorporating memory into trainable models that have been applied to
real world recurrent problems ranging from natural language processing to healthcare.

Aims — The project will explore memory rich machine learning architecture to review both historical
approaches against recent. Current state of the art models have become the definitive for recurrent prob-
lems until recently where an architecture has been proposed to bridge the gap between classic Turing
Machine architectures with neural computing models to train programmable models. The project will
analyse, evaluate and compare these upcoming memory heavy architectures and discuss their capability in
solving problems from data structure tasks to real world strategic, computer vision and natural language
processing problems.

Method — Our system poses state of the art recurrent architectures against the new Differential Neural
Computer, a Turing machine inspired architecture that performs actions on memory using read heads and
is the basis for most modern computation. We optimised and improved the architectures, applying modern
recurrent neural network regularisations and optimisations maximising potential of our architectures. We
applied revisions to the models through deeper exploration of the mechanisms through visualisations.

Results — We evaluated the power of the models gaining insight into the difficulties of training. Our
methods prove the scalability and how powerful the memory mechanisms compare. The concluded archi-
tecture are tested and insights applied into realised problems. The use of various common visualisation
techniques and more concept ideas will allow us to validate our findings.

Conclusions — The project exhibited the power of the state of the art memory architectures, and demon-
strated cases highlighting the benefits of the differential neural computer architecture. Through the un-
derstanding of the bottlenecks of the architecture, we identified shortcomings of the models and applied
revisions to improve the architecture.

Keywords — Artificial Intelligence, Computer Vision, Machine Learning, Natural Language Processing,
Recurrent Neural Network, Regularisation, Turing Machine

1

I INTRODUCTION

Artificial intelligence (AI) research constantly strives to create truly intelligent systems, some-
thing classically modelled on human intelligence. This does not come without difficulty, where
the universe itself can be visualised as a giant time sequential masterpiece of patterns. Examples
range from video, audio, speech and so understanding ordered patterns is key. Turing (1950)
elaborated on the difficulties of intelligent machines and led to discussing ‘The Imitation Game’,
a test that uses recurrent data. We won’t directly attempt the challenge, but natural language
processing (NLP) and strategy are core to the problem.

In recent years’ advances have been made in sequential problems thanks to advancements
in machine learning (ML) that led to algorithms that recognise patterns in high dimensional se-
quence data (Karpathy, 2015). Feed-forward and convolutional neural network (CNN) research
in competitions like the ImageNet1 drove research and were extended into recurrent neural net-
works (RNNs). Regularisations and visualisations from such fields will be drawn to benefit our
models.

RNN architectures can recur previous state/memory through the model as we chronologically
process the sequence. More recently research has taken a radical approach to neural network
design in the form of Differential Neural Computer (DNC) that inflates memory at the disposal
of the models (Graves et al., 2016). It crosses a Turing Machine (TM) (Turing, 1937), the basis
of modern programmable computation, using neural networks to train a program. The models
stem close to classic computer architectures, something Turing (1950) later discussed as ‘Digital
Computers’ made up of core parts: Store, Execution Unit and Control as portrayed recurrently
in Figure 1. In our research we will elaborate on this idea to acumen future research and push
model capabilities.

yt

Store (Memory)

Control Unit

Execution Unit

xt

yt+1

Store (Memory)

Control Unit

Execution Unit

xt+1Input:

yt-1

Store (Memory)

Control Unit

Time Step: t-1

Execution Unit

xt-1

Time Step: t Time Step: t+1

Output:

Figure 1: Turing’s ‘digital computer’ model unravelled over time-steps for recurrent problems.

A Potential Applications

NLP interfaces human-computer communications and, due to the highly contextual nature of
communication, the problem area lends itself to memory models. Examples include automatic
summarisation, sentiment analysis, translation speech recognition and text-to-speech problems.

1ImageNet - www.image-net.org/ (accessed February 2017)

2

Healthcare also draws benefits from recurrent problems, feeding clinical measurements to
predict early signs of disease like Lipton et al. (2015) attempting to classify 128 diagnoses.

B Project Aims and Deliverables

The project aims to explore state of art against the DNC architecture on a variety of problems. We
answer: ‘How do concept recurrent architectures compare to state of the art in memory, speed,
complexity and their potential?’ The aims are broken into components:

1. Validate state of art and concept recurrent architectures against research problems.
2. Optimise the architectures to push capabilities and limits of the models.
3. Visualise the methods to understand and verify their inner workings.
4. Explore adjustments to improve the models.

We realise these aims through the deliverables listed in Table 1.

Deliverable Class
Implementation of a classic RNN models: SRN/RNN, LSTM, GRU. Basic
Implementation of a modular testing system. Basic
Implementation of a problem interface with basic problems. Basic
Implementation of the DNC neural architecture. Intermediate
Validation of DNC against original paper claims. Intermediate
Optimisation of the system for SIMD architectures. Intermediate
Investigate regularisations and optimisations over the architectures. Intermediate
Visualisation system for understanding the inner workings of the models. Intermediate
Implementation of more complex problems to challenge model characteristics. Intermediate
Implementation of real world recurrent problems to the models. Advanced
Implementation of distributed variant of the algorithms. Advanced
Improvement to mechanisms of the DNC architecture. Advanced

Table 1: Project Deliverables.

II RELATED WORK

In this section we review the history behind recurrent problems and recurrent architectures, ex-
ploring optimisations and visualisations that could enhance our models.

A Architectures

RNNs are ML architectures that tackle sequence data problems. In this sub-section we survey
key milestones in recurrent architectural research history.

A.1 Simple Recurrent Network (SRN)

Back-propagation by Rumelhart et al. (1986) is the base of learning algorithms, and was ex-
tended for sequence data by Werbos (1990) to create the back-propagation through time (BPTT)
algorithm. Elman (1990) used this to coin the simple recurrent network (SRN). Elman applied
the architecture to the next letter prediction problem and next word prediction in sentences, an

3

elementary NLP problem demonstrating early uses RNNs in the field.

Bengio et al. (1994) explored the difficulty of training due to the added complexity that grew
with sequence length and issues like gradients blowing up or vanishing on long term dependen-
cies. Elman used truncated BPTT of Williams and Peng (1990) to counter the limitation, however
this is unable to yield long term dependencies further than the truncation weakening the model.

A.2 Long Short-Term Memory (LSTM) & Gated Recurrent Unit (GRU)

Issues in the SRN led to the work of Hochreiter and Schmidhuber (1997) developing the long
short-term memory (LSTM) architecture. The technique, often described as a SRN regularisa-
tion, was designed to maintain long term dependencies through gating mechanisms that avoid
vanishing or exploding gradients and assist efficient gradient flow through the models.

LSTMs are still prominent today including the PixelRNN by van den Oord et al. (2016), an
implementation that demonstrates recurrent depths of 12 LSTM units to yield high level data
abstractions on hard problems. Other research includes naive regularisation heuristic Pascanu
et al. (2012) to the gradient explosion problem that clips gradients at a given threshold.

The Gated Recurrent Unit (GRU) proposed by Bahdanau et al. (2014) is an LSTM simplifi-
cation that attempts to accelerate learning. Merits of the GRU over the LSTM have been subject
to deliberation, with Chung et al. (2014) concluding deficient evidence and that further problems
should be explored. In our research we investigated this open problem.

A.3 Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC)

Much like that of a human the LSTM uses neurons for storage, but what if we were able to mount
accessible memory like a modern computer? Recent research probed such radical ideas leading
to the Neural Turing Machines (NTM), a simulated Turing Machine (TM) controlled by a neural
network (Graves et al., 2014). The model abstracts similarities with the TM Turing (1937) using
read/write heads to access and modify a memory matrix.

DeepMind2 improved their memory mechanisms forming the Differential Neural Computer
(DNC) (Graves et al., 2016). The architecture constrains the mechanics of the NTM into a more
trainable system through introduction of usage vectors and link matrices to improve memory
lookup. There has been mild success replicating the DNC, once in October 2016 where a small
system was made3. Shortly after, Samir implemented the model4 in a more common library that
we will build upon, optimising and analysing the DNC mechanisms on a variety of problem areas
to cross validate against a more standard LSTM/GRU model.

B Problem Areas

Recurrent problems span a wide variety of fields, something we explore in following sub-sections.
2DeepMind - deepmind.com/ (accessed 04/2017)
3yos1up/DNC: Differentiable Neural Computers github.com/yos1up/DNC (accessed 03/2017)
4Mostafa-Samir/DNC-tensorflow: A TensorFlow implementation of DeepMind’s Differential Neural Computers

(DNC) github.com/Mostafa-Samir/DNC-tensorflow (accessed 03/2017)

4

B.1 Data Structure Manipulation

Data structures are the foundation to problem solving and provide good baseline benchmarks for
the inner workings of models. It will also prove useful when evaluating the algorithmic power
behind the DNC. Examples of this include Henaff et al. (2016) performing similar analysis.

B.2 Strategic Problems

Strategic problems involve designing a policy to solve a given task. Headlines were reached by
the DNC being applied to navigate the London Underground5, an application of graph theory, an
interesting achievement in reasons the press did not realise. The press focused on the real nature
to the problem, yet overlooked the ability to form strategy on problems like block puzzles.

A Rubik’s cube problem sustains roughly 43, 252, 003, 274, 489, 856, 000 permutations, and
the difficulty has been heavily researched by projects like Rokicki et al. (2010). The work of
Cube 20 made it possible confirm ‘God’s Number’ bounding maximum diameter of the 3×3×3
Rubik’s cube state space. Irpan (2016) explored boosted LSTM but concluded the extensive
difficulty of the Rubik’s cube, something we too wish to investigate on various cube sizes.

B.3 Computer Vision

Classifying handwritten digits is standardised by LeCun and Cortes (2010) as MNIST. The com-
puter vision problem evolved into a baseline ML benchmark as one of the original neural network
applications. Although not classically a recurrent problem, it is possible to formulate recurrently.

B.4 Natural Language Processing (NLP)

A powerful application of RNNs is in NLP thanks to its sequence modelling abilities. Early re-
current models like the SRN Elman (1990) were applied to some elementary word sequencing
problems. The paper also discussed vector representation of words later evaluated by Řehůřek
and Sojka (2010), more recently Word2Vec of Mikolov et al. (2013) has became the state of the
art.

Question Answering is the ability to understand and reason with text, a key problem for
human computer communication. Weston et al. (2015) standardised a set of problems known as
bAbi. The DNC was applied to the problem by Graves et al. (2016) and later investigated by
Samir4 concluding trainability but limited improvement.

Sentiment Analysis focuses on classifying opinions towards text and has became a bench-
mark in RNN as the IMDb movies database (Maas et al., 2011). The problem classifies movie
reviews from IMDb6 as positive or negative. Another example is classifying different argument
sentiment types Oraby et al. (2016) including sarcasm, a popular application for filtering product
reviews and has further led to datasets on Amazon.com reviews (Filatova, 2012).

5DeepMind’s AI learned to ride the London Underground using human-like reasoning and memory - www.wired.
co.uk/article/deepmind-ai-tube-london-underground (accessed 2017)

6‘IMDb - Movies, TV and Celebrities - IMDb’ - IMDb.com Inc. - www.imdb.com (accessed 03/2017)

5

C Optimisations

Efficiently trainable models are vital for effective systems given the high complexity and parametri-
sation of the models. In this sub-section we explore RNN regularisations and optimisations.

C.1 Regularisation

Over-fitting is when we fit the training set too closely over the general case. The regularisation
work of Zaremba et al. (2014) can help avoid over-fitting, like dropout that removes dependence
on certain neurons through random neurons used during training popular with feed-forward net-
works and was mutated for RNNs. L1/L2 regularisation ensures network weights remain small,
discussed by Pascanu et al. (2012) for recurrent models.

C.2 Scalability

Hardware parallelisation was a key breakthrough in ML that came power contained by general
purpose graphics processing units (GPGPU). Thanks to the high vectorisation and parallelisa-
tion potential of ML functions, we scale training over these many-core GPGPUs as single input
multiple data (SIMD) programming. Future ML specific hardware like Tensor Processing Unit
(TPU)7 aim to take this further. Unfortunately the youth of TPUs mean we won’t be able to test
the claims, but we will investigate GPGPU advantages.

Distributed learning was a core part of the Tensorflow library (Abadi et al., 2015, 2016).
Thanks to the serialisation it is possible to distribute over different hardware options demon-
strated by projects like AlphaGo that utilised 1920 CPUs and 280 GPUs (Silver et al., 2016). We
lack this scale of resources, however will investigate speed up on a lesser scale.

D Visualisation

Understanding hidden logic of a neural network can further enhance and optimise models (Karpa-
thy et al., 2015). Advancements in tools like Tensorflow make it possible to visualise the models
live:
• Tensor Visualisations — Verifying neuron distributions provides insight into model learn-

ing and helps deciding the need for regularising through methods like L1/L2.
• Word Embeddings — High dimensional word embeddings can be visualised using a non-

linear dimensionality reduction techniques like t-SNE van der Maaten and Hinton (2008)
and are be powerful when applied to word-embeddings like by Mikolov et al. (2013).
• Model Visualisations — As we create self-programming TMs, visualising the workings

of the mechanisms on the memory could prove useful.

III SOLUTION

Progressively defining our models, optimisations, regularisations and modifications with hy-
potheses are discussed in this section followed by the targeted problems areas.

7Google Cloud Platform Blog: Google supercharges machine learning tasks with TPU
custom chip - Google Cloud Platform Blog cloudplatform.googleblog.com/2016/05/

Google-supercharges-machine-learning-tasks-with-custom-chip.html (accessed 03/2017)

6

A Model

In this sub-section we evolve our model from a SRN all the way to our most advanced DNC.

A.1 Simple Recurrent Network (SRN)

We begin with the SRN model of Elman (1990) by defining hidden variable h at time-step t, with
weight matrices W∗, bias vectors b∗, input xt, activation functions σ∗ to form predicted output ŷt:

ht = σh(Wxhxt +Whhht−1 + bh) (1)

ŷt = σy(Whyht + by) (2)

Unfolding our network over time t, we form a trainable neural network (Rumelhart et al., 1986).

A.2 Long Short Term Memory (LSTM) & Gated Recurrent Unit (GRU)

We regularise our SRN into the LSTM described by Chung et al. (2014). The unit maintains
both an input and forget gate i, f at each time-step t:

it = SIGMOID(Wxixt +Whiht−1 +Wcict−1 + bi) (3)

ft = SIGMOID(Wxfxt +Whfht−1 +Wcfct−1 + bf) (4)

Updated cell contents ct is updated partially forgetting previous and adding the new content:

ct = (ftct−1 + it tanh(Wxcxt +Whcht−1 + bc)) (5)

Our output gate o modulates the memory exposure finally combined as output h:

ot = SIGMOID(Wxoxt +Whoht−1 +Wcoct + bo) (6)

ht = (ot tanh(ct)) (7)

The GRU similarly defined by Chung, simplifies this using update gate z and reset gate r:

zt = σ(Wxzxt +Whzht−1 + bz) (8)

rt = σ(Wxrxt +Whrht−1 + br) (9)

That are combined to create candidate activation h̃ where � is the Hadamard product:

h̃t = tanh(Wxh̃xt +Wrhh̃(rt � ht−1) + bh̃) (10)

A linear interpolation between previous activation ht−1 and candidate h̃ forms our cell output:

ht = ((1− zt)ht−1 + zth̃t) (11)

The simplicity of the GRU is obvious, hence has potential to train faster. Both models are
able to moderate their update unlike SRNs. Another core GRU difference is the inability to con-
trol both the new and current memory separately and instead exposes the full memory.

Layering recurrent units form higher levels of data abstractions to improve pattern recognition
performance where the output of one layer becomes the input to the next. Depth was exhibited
by van den Oord et al. (2016) reaching depths of 12, a potential merit we wish to explore.

7

A.3 Neural Turing Machine (NTM) & Differential Neural Computer (DNC)

The NTM was built around basic functions of a TM, controlled by a neural network. The DNC
improves the NTM by re-engineering the restrictive head mechanisms. We focus on the DNC,
forming definitions from Graves et al. (2016) breaking each time-step t into four distinct stages.

Stage 1: Controller Parsing — Firstly we define the controller, a single neural network that
takes as input the current input vector xt concatenated with previous time-step read vectors from
each read head i: rit−1 later defined. The controller can be any neural network including feed-
forward and RNNs. Using the scheme in Table 2 we parse controller output vector ct. We define
constants R - the amount of read heads; N memory rows of width W.

Field Name Notation Description Domain Activation
Lookup mask lt Mask for key-value lookup RW SIGMOID

Write key kwt Lookup key for writing RW SIGMOID

Write strength βw Write key strength R SOFTPLUS

Free gates gft Free or retain read heads locations RR SIGMOID

Allocation gate gat Allocate or replace memory R SIGMOID

Write vector vt Vector to be written RW SIGMOID

Erase vector et Vector to be erased RW SIGMOID

Write gate gwt Perform write R SIGMOID

Read keys kr,it Lookup keys for reading RR × RW SIGMOID

Read strengths βr,i
t Read key strengths RR SOFTPLUS

Read modes πi
t Read modes RR × R3 SOFTMAX

Table 2: DNC controller output ct parsed at time-step t, R read heads, N widthW memory rows.

State Field Notation Description Domain
Memory Matrix Mt Matrix of rows representing memory. RN × RW

Usage Vector ut Vector showing memory row usages. RN

Precedence Vector pt Previous write vector. RN

Link Matrix Lt Temporal links between write locations.
Lt[i, j] represents if row j was written after i.

RN × RN

Table 3: Internal state of a DNC at time-step t with N width W memory rows.

Stage 2: Writing — Writing is performed on DNC state defined in Table 3. Memory accesses
are performed using weightings w ∈ RN that represent a weighting over each row of the memory
matrix. To choose our final write weighting ww

t , we consider two weightings: lookup weighting
wl

t and allocation weighting wa
t , modulated between using allocation gate gat . To form our lookup

weighting, we use a content based lookup LOOKUPBYVALUE from Equation 12, a method that
calculates cosine similarity between a vector and each memory matrix row forming a weighting.

LOOKUPBYVALUE(Mt, v)[i] =
M [i] · v
|M [i]||v|

(12)

8

LOOKUPBYVALUE relies upon knowing some value which seems counter-intuitive as if we knew
the value, we wouldn’t need to perform the lookup. The controller encodes this however we
investigate a modification that masks the vector on lookup allowing a key lookup in Equation 13.

MASKEDLOOKUPBYVALUE(M, v, l)[i] =
(l �M [i]) · (l � v)
|l �M [i]||l � v|

(13)

Lookup Write Weighting: wl
t = LookupByValue(M,kw, l) (14)

We also consider allocation weighting wa
t , calculated through usage vector ut and free list φt:

Usage Vector: ut = (ut−1 + ww
t−1 − ut−1 � ww

t−1)�
R∏
i=1

(1− gft,iw
r,i
t−1) (15)

Free List: φt = SORTINDICESASCENDING(ut) (16)

Allocation Weight: wa
t [φt[j]] = (1− ut[φt[j]])

j−1∏
i=1

ut[φt[i]] (17)

The final write weighting is then modulated by gates gwt , gat :

Write Weighting: ww
t = gwt (g

a
tw

l
t + (1− gat)wl

t) (18)

Finally, the state updates are performed using write vector v and erase vector e:

Memory Matrix: Mt =Mt−1 � (1− wweT) + wwvT (19)

Precedence Vector: pt = (1−
∑
i

ww
t [i])pt−1 + ww

t (20)

Link Matrix: Lt[i, j] = (1− ww
t [i]− ww

t [j])Lt−1[i, j] + ww
t [i]pt−1[j] (21)

Stage 3: Reading — We read using our R read heads independently on the state. Each head
performs lookup using one of three options by either forward or backward links from the last
head read location or an independent lookup by value:

Forward Weightings: wf,i
t = Ltw

r,i
t−1 (22)

Backward Weightings: wb,i
t = LT

t w
r,i
t−1 (23)

Read Weightings: wr,i
t = πi

t[w
f,i
t , LOOKUPBYVALUE(Mt, k

r,i
t), wb,i

t] (24)

Read Vectors: rit = βr,iMT
t w

r,i
t (25)

Stage 4: Output — Final output for the given time-step t is calculated using interface vector ct
and read vectors rit regressed through a feed-forward neural network. The step allows the DNC
to access read vectors or bypass the DNC and use the controller to directly process the input.

Predicted Output: ŷt = σ(Wvyct +Wryrt + by) (26)

9

A.4 Training

We evaluate our output with a binary cross entropy loss of actual y against predicted ŷ shown in
Equation 27. Full pipeline differentiability enables our loss to be minimised through differentia-
tion with respect to the network parameters, using stochastic gradient descent (SGD). Dynamic
learning rate progressions of SGD include root mean squared back-propagation (RMSProp) that
works well in on-line and non-stationary settings by maintaining a moving average of the squared
gradient for each weight and dividing the gradient by the root (Tieleman and Hinton, 2012). Sim-
ilarly, Adaptive Moment Estimation (Adam) by Kingma and Ba (2014) also keeps exponentially
decaying average of past gradients, boasting advantages like parameter updates being invariant
to gradient rescaling, working with sparse gradients or its ability to naturally performs a form of
step size annealing.

CROSSENTROPY(y, ŷ) = − 1

n

n∑
t=1

(ŷt · log(yt) + (1− ŷt) · log(1− yt)) (27)

A.5 Regularisation

Due to the nature of the problems such as the data structure challenges, we are able to efficiently
generate training examples and so minimise risk of over-fitting. For tasks like the sentiment
analysis however, we have limited datasets and thus regularisation is a requirement. Dropout
will be investigated to ensure we are not too reliant on particular neurons (Zaremba et al., 2014).

B Sequence Modelling

Similar to the way logic interpreters are fed, we pass a sequence of facts that defines the problem
followed by a flag or query to initiate the output:

Input: x

Output: y

Data Question

Answer
Problem Embedding

(28)
To embed a Rubik’s cube state, we follow a similar naive approach to Irpan (2016) by feed-

ing each face colour to the model as one hot vectors. By using the Rokicki et al. (2010) hardest
cube position sequences, we are able to form optimal move sequences. Due to symmetry and
sub-structure optimality we are able to form a huge dataset to train on, regressing the next move.

For sentiment problems, we must embed words as fixed dimension vectors. An approach
would to represent each word by unique one-hot vectors. This method is however limited as the
size input vectors scales with the amount of words in the dataset. Mikolov et al. (2013) constructs
the state of the art Word2Vec embedding that attempts to place similar words like synonyms
nearby. We compare both approaches as pre-processing using the Gensim library (Řehůřek and
Sojka, 2010).

10

C Performance Optimisation

The solution is optimised for our high performance computing (HPC) GPGPU cluster8. To effi-
ciently maximise use of the cluster we choose a modern ML library enables us to quickly scale to
hardware resources like GPGPUs. An issue with the DNC, is the sort algorithm in the allocation
mechanism performed on CPU due to the difficulty of implementing such algorithms on SIMD
architectures and we investigate hardware transfer bottlenecks.

Node 1 Node 2
Worker 2

Worker 1

Worker 4

Worker 3

Staging Node

Parameter
Server

GPU

GPU

GPU

GPU

CPU

CPU

CPU

CPU

CPU

Worker 0
(Chief)

CPU

Figure 2: Distributed training master-
worker network topology.

Scaling over multiple nodes is core to the Tensor-
flow library (Abadi et al., 2015, 2016). Figure 2 dis-
plays our master-worker topology that forms a worker
for each GPGPU. Our chief worker, contrary to the
Tensorflow documentation, maintains visualisations and
I/O on a CPU node maximising GPGPU throughput of
other workers by not performing training. There are two
approaches for distributed training:
• Synchronous — Batches are processed at the

same time, averaging the update.
• Asynchronous — Each worker will update the

model when it has finished.
Asynchronism suits our varied hardware that process batches at different rates as in synchronous
settings, the training would be limited by the slowest worker.

IV RESULTS

In this section we evaluate DNC configurations and modifications, validating against classic
RNNs over a variety of problem areas.

A Architecture

We begin by refining our models for consistency, progressively explored in this sub-section.

A.1 Controllers

At the heart of a DNC lies a controller, but what makes a good controller? In Figure 5 we yield
similar learning performance between DNC LSTM and GRU. We therefore focus on the LSTM
for the controller and as our comparison RNN due to the established trust of the model.

SGD fails to improve above 83% accuracy shown in Figure 3 but the embedding from Equa-
tion 28 also measures pre-answer 0s thus easily achieving n+2

2n
% > 50%. Dynamic rate descent

algorithms like Adam performs more gradually but RMSProp is able to accelerate the process.

8Node 1: 2× Intel Xeon CPU E5-2650 v3 @ 2.30GHz; 64GB DDR3 RAM; 2× Nvidia Tesla K40c GPUs, 12GB
GDDR5 each, 2880 CUDA cores each
Node 2: 2× Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz; 64GB DDR3 RAM; 2× Nvidia Titan X (Pascal) GPUs,
12 GB G5X each, 3584 CUDA cores each
Staging: 4× Intel(R) Xeon(R) CPU E5620 @ 2.40GHz; 16GB DDR3 RAM

11

0 10000 20000 30000 40000 50000 60000 70000
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Optimiser
RMS
SGD
Adam

Figure 3: Training accuracy of optimisa-
tion algorithms on a DNC Feed-forward (1)
against the copy 9 problem.

0.2 0.4 0.6 0.8 1.0 (Off)
Dropout

0

10000

20000

30000

40000

50000

60000

70000

97
%

 P
ea

k
Ac

cu
ra

cy
 It

er
at

io
n

x1
00

Problem: Model (batch size)
Reverse Copy: DNC - LSTM (1)
Reverse Copy: LSTM (1)
Reverse Copy: LSTM (128)
MNIST: DNC - LSTM (1)
MNIST: LSTM (1)
MNIST: LSTM (128)

Figure 4: Effect of dropout on reaching
97% peak accuracy against reverse copy
and MNIST problems.

A.2 Regularisation

Dropout between recurrent layers is applied to prevent over-fitting our data. Figure 4 displays
the effect on the DNC and LSTM, witnessing significant improvement reaching high accuracy
at p = 1.0 dropout (Off). The LSTM was unable to train in low dropout cases. MNIST yielded
similar conclusions implying self-regularising properties of the models are sufficient.

B Problem Applications

Numerous problems can be embedded recurrently. In this subsection, we will explore a variety
of problem areas to investigate model characteristics, optimisations and regularisations.

B.1 Data Structure Manipulation

Evaluating the models against basic data structure challenges will give us an insight into the
DNCs ability to learn to utilise its memory mechanisms.

Copy, Reverse and Repeat-Copy — Lists are at the heart of most computational problems and
so recall tasks are an effective way to measure memory stored in a network.

Mini-batching helps reduce variance between gradient updates, ensuring a gradual and con-
sistent descent. In Figure 5 there is clear difference between the high batch size LSTM and the
more erratic learning of a low batch size DNC, yet this allows the DNC to learn the algorithm.
Around step 13, 000 for DNC Feed-forward notices an effect we call the penny drop, stemming
from the idiom referring to sudden gained understanding like the algorithm reaching a break-
through. We quantify the penny drop as the iteration where 99.95% accuracy is achieved. The
distributions are visualised in Figure 6 showing an LSTM has less variance with higher batch size
and thus learning earlier and more consistently. The DNC with LSTM controller performs better
than feed-forward, unsurprising with the additional memory of a RNN, however suffers more
variance. Extreme cases also occur more often proving confusion between memory sources.

12

0 2500 5000 7500 10000 12500 15000 17500 20000
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Model (batch size)
DNC Feed-forward (1)
DNC LSTM (1)
DNC GRU (1)
LSTM (1)
LSTM (32)
LSTM (64)

Figure 5: Accuracy of different models
against the copy task of length 9.

10000 20000 30000 40000 50000 60000 70000 80000
Iteration Reaching 99.95% Accuracy

DNC Feedforward (1)

DNC LSTM (1)

LSTM (1)

LSTM (32)

M
od

el

Figure 6: Variance of 9 runs on each model
reaching 99.95% accuracy.

L

F

F

F

F

F

F

F

A

L

A

A

A

A

A

A

A
A

Read	Forward
Read	Lookup
Read	Backward

F

L

B

Write	Allocation
Write	LookupL

A

L

A

A

A

A

A

A

A

A

A

L

B

B

B

B

B

A

A

A

(a) Normal Copy (b) Reverse Copy

A

A

A

A

A

L

L

A

A

A

A

A

A

A

A

A

L

LF

F

F

F
F

F

F

F
F

F F

(c) Repeat 3 Copy

Sl
ot
s

Time-step Time-step Time-step
(d) Lookup

Time-step

A

A

A

A

A

L
L

Co
lu
m
ns

Time-step

Figure 7: Visualisation of the read and write heads of a trained DNC.

Allocating memory is essential when copying, followed by reading these slots using links
validated by Figure 7(a). Extensions to copy include reverse copy that works similar to normal
copy but using backwards lookup capability in Figure 7(b). Repeat copy assures the system is
not loosing data on lookup in Figure 7(c). These problems demonstrate the power of the link
matrix but as previously discussed, this is an expensive mechanism. We replaced the mechanism
with a sparse matrix, by next and previous links in the form of a value rather than a weighting
for us to use content lookup on. This brings the link matrix into space complexity O(NW).
Upon implementation the DNC circumvents this using lookup by value, likely due to increased
complexity that the controller avoids.

Lookup Tables — Table storage is a prevalent programming mechanism, practical for testing
the LOOKUPBYVALUE method of the model. First, we visualise the memory matrix in Figure 9
over a copy task, demonstrating the distribution of memory to facilitate lookup by value. Figure
7(d) validates looking up the relevant query, but how does MASKEDLOOKUPBYVALUE com-
pare? The mask is also visualised showing a sparse use of the matrix used for the lookup keys.
As the mask is chosen by the controller neural network, there must be an advantage to using the
mechanism yet it demonstrated experimentally no influence on training speed.

13

The pair lookup problem extends lookup where data can come as a bijection, using both sides
of the pair to query the other. The task tests the ability to query a single cell of data depending
on a bit in the query vector. The DNC shows no struggle to learning this method, however the
mask resembles a ones vector and so is querying the full memory row.

Figure 8 displays an interesting phenomena of DNC learning. Feed-forward sees that the
model reaches high accuracy earlier for the larger sequences, likely due to the more forceful
use of training mechanisms. The LSTM witness early achievements on small sequences due to
using the LSTMs built in memory. Upon growing the sequences, this detriments the model as
it becomes a battle of mechanisms until we reach length 8 where it has no choice but to use the
memory mechanisms properly.

1 2 3 4 5 6 7 8 9 10 11 12
Input Length

0

50

100

150

200

Ite
ra

tio
n

(x
10

00
) r

ea
ch

in
g

97
%

 A
cc

ur
ac

y

DNC Controller Model (batch size)
DNC LSTM (1)
DNC Feed-forward (1)

Figure 8: Iteration reaching 97% accuracy
on lookup task for sequence lengths com-
paring DNC controller models.

Figure 9: A t-SNE 3D visualisation of the
DNC memory matrix over after copy task.

B.2 Computer Vision

Machine learning benchmarks include the MNIST problem by LeCun and Cortes (2010) and we
confirmed a DNC is capable of training and most utilising the memory and not simply bypassing
to use the controller’s neural network. Our naive implementation embed the problem as a row by
row approach as opposed to pixel by pixel. This is because it reduces the sequence lengths by 28
times and thus ensures our models aren’t affected by length with results shown in Table 4.

B.3 Rubik’s Cube

Training the Rubik’s cube is possible to an extent and there is potential for the memory heavy
architectures to complement the problem. However we discovered a flaw to our logic: We could
penalise the system for perfectly valid equivalent moves. In doing so we are expecting the system
to perfectly overfit the problem rather than solve it. We need to be able to evaluate moves with
respect to how far it becomes from the goal, but with a state space as large as it is this is infeasible
without much further research. Unless we reach near perfect accuracy, the model will be useless
in most cases.

14

Problem Model (batch size)
DNC Feed-forward (1) DNC LSTM (1) LSTM (1) LSTM (64)

MNIST 89.24% 95.44% 97.81% 99.06%
IMDb 65.63% 64.32% 65.22% 66.17%
Sarcasm 53.54% 54.28% 57.48% 59.17%

Table 4: Peak test accuracy of the various models.

B.4 Sentiment Analysis

Classifying movie reviews as positive or negative we reach best around 62%, an accuracy level
much less than the work of Maas et al. (2011) who managed to achieve 88.89%. This is likely
due to the one-hot word embeddings used in addition that limiting our dictionary to 1000 words.

Figure 10: A Word2Vec word embed-
ding of the sarcasm corpus visualised
using t-SNE (dim 50, perplexity 30,
learning rate 1, 1k iterations)

Extending upon basic positive/negative regression,
we consider the sarcasm dataset from Filatova (2012)
of Amazon reviews. This time, we pre-process the data
using Word2Vec, trained on word occurrence distances.
This allows us to extract vector space embedding as
shown in Figure 109. Words like ‘wonderful’ have sim-
ilar semantic meaning to ‘fantastic’ and so are a good
embedding, yet ‘boring’ could be considered the oppo-
site. This highlights the erratic nature of sarcasm, hint-
ing at the difficulty of the problem.

C Performance Analysis

Ensuring efficient training is a vital component in ML
for quick, effective and scalable systems. In this subsec-
tion we evaluate the performance bottlenecks and their
optimisations.

C.1 Scale Up

Scaling up involves optimising for parallelisation and vectorisation on specialised hardware. Fig-
ure 11 compares the iteration rates of various recurrent models, unsurprisingly showing that the
DNC is slower than classic RNNs due to the overheads from the mechanisms.

Batch size is another important factor for running on a GPGPU, something further investi-
gated in Figure 12 demonstrating the power of a multi-core CPU on low batch sizes overtaken by
the SIMD architectures on higher batch sizes. The high speed up is possible due to the overheads
in training and optimisations of the library.

9Sarcasm Corpus Visualisation -
projector.tensorflow.org/?config=https://community.dur.ac.uk/a.p.breeze/alastm/config.php (ac-
cessed 03/2017)

15

LS
TM

 (1
)

LS
TM

 (1
28

)

GR
U

(1
)

GR
U

(1
28

)

DN
C

Fe
ed

-fo
rw

ar
d

(1
)

DN
C

LS
TM

 (1
)

DN
C

Fe
ed

-fo
rw

ar
d

(8
)

DN
C

LS
TM

 (8
)

Model (batch size)

0

10

20

30

40

50

60

Ite
ra

tio
ns

 P
er

 S
ec

on
d

Hardware
CPU: 20 cores
GPGPU: 2880 CUDA cores
GPGPU: 3584 CUDA cores

Figure 11: Comparing iteration rates of var-
ious models and batch sizes on a copy 9.

2
0

2
2

2
4

2
6

2
8

2
10

Batch Size

0

50

100

150

200

250

300

350

400

Sp
ee

d
Up

 O
ve

r S
in

gl
e

Co
re

 C
PU

Hardware
CPU: 20 cores
GPGPU: 2880 CUDA cores
GPGPU: 3584 CUDA cores

Figure 12: LSTM speed up over single-core
CPU on various hardware.

The DNC allocation mechanism was hypothesized as unsuited to a GPGPU architecture, in
particular the sorting mechanism. Speed difference after removing the allocation mechanism is
shown in Figure 14 where large improvement on GPGPU confirmed our hypothesis. Training
suffered due to only allocation by lookup on a blank matrix and led to initialising the matrix:
• Zeros — Training was possible, however the system was using multiple memory slots per

step and so training was not as algorithmically structured as before.
• Binary Numbers — Initialising each memory slot as the binary representation of the id.

But cosine similarity can still have the same distance to various binary vectors.
• Consistently Random — Initialised a subset of each row to to a uniformly random vector,

but by fixing the seed of the random generator it is trainable.
The above techniques helped bypass sorting, however the system was less predictable imply-
ing stability added by the implementation. Forcing single slots helped, however again further
complicated the model.

C.2 Distributed Speed Up

Different speed up over various GPUs achieve various batch sizes visible in Figure 12, consol-
idating the asynchronous distributed architecture decision to maximise utilisation. Maximising
the workers is vital, however upon analysis of the chief worker we found that the chief was only
achieving 65.5% of the performance of other workers. This is due to the overheads of a chief
including initialization, checkpoints, visualisations, and recovery. Separating the chief onto a
separate CPU process balances worker load and maximised GPGPU usage.

Distributed speed up was witnessed Figure 13, achieving near linear improvements. Even a
single worker over the serial approach saw great speed up due to separating some work to a chief,
maximising our hardware utilisation.

16

1 2 3 4
Number of Workers

0

2

4

6

8

10

Sp
ee

d
Up

 O
ve

r S
er

ia
l

Model (batch size)
DNC Feed-forward (1)
DNC LSTM (1)
LSTM (1)
LSTM (128)
GRU (1)
GRU (128)

Figure 13: Distributed speed up over serial
execution on the copy task.

1.63Multi-Core CPU
4.59GPGPU

0 1 2 3 4 5
Speed up

Figure 14: DNC speed up when allocation
mechanism is removed.

V EVALUATION

In this section, we draw on the strengths and shortcomings of the models in addition to analysing
our research methodology. We reflect back to the original question: ‘How do concept recurrent
architectures compare to state of the art in memory, speed, complexity and their potential?’

A Strengths

A highly versatile system facilitated testing of the architectures over a span of different problem
areas. The DNC’s algorithmic ability showed promise for neural computational models where
the DNC was able to solve problems, where classic RNNs could only approach this limit. Iden-
tifying concepts like the penny-drop effect that are key for analysing these kinds of models.
Applying different learning algorithms, regularisations and hyper-parameter optimisation pro-
vided valuable insight and optimism for future research in the field.

Profiling quantified the merits to scaling over a distributed system demonstrating signifi-
cant speed-up with our own topology. Our re-engineered algorithms like the lookup mechanism
proven to be used by the neural network. Altogether this resulted in our highly optimised state
of the art implementation capable of a range of problem areas.

B Limitations

A DNC is an unorthodox architecture to train and optimise. Examples include batch size gaining
better training over classic RNNs on low batch sizes, but on higher batch size training became
detrimentally slow. We showed the DNC as capable at learning algorithms but not always bene-
ficial over classic RNNs with some cases bypassing the memory mechanisms to instead use the
controller. Scalability was another concern to the DNC, where some state size was inO(n2). We
explored ideas to store links sparsely demonstrating the difficulty training these mechanisms.

SIMD parallelisation has become popular in ML and we were able to successfully witness
speed up with GPGPU architectures. Performance analysis did however identify bottlenecks
like the memory allocation that we were unable to re-engineer, justifying original approaches

17

complexity. Libraries were capable of our architectures, however huge computational graphs do
not scale well. Our research provides insight for future improvement to the libraries.

C Approach

Due to the youth of the research, a dynamic and agile methodology was necessary. As the pri-
mary research had not released the code, our base model stemmed from open source projects and
their insights. Our modularised testing and visualisation system facilitated many problems and
optimisations. Visualisations enabled efficient understanding of our models through a live web
portal allowed us to easily manage the extensive runs in real time.

Upon repeating the project, we would focus more on classic NLP problems rather than the
Rubik’s cube that was harder than anticipated, requiring large amounts of discrete maths research.

VI CONCLUSIONS

Our research evaluated and experimented with the cutting edge DNC neural architecture, study-
ing the characteristics against a range of sequential problem against classic recurrent models like
the LSTM. We successfully ratify our original project aims:

1. We validated state of art and concept recurrent architectures against research problems.
2. Our optimisations to the architectures have pushed the power of the models.
3. By visualising the models in classic and more abstract ways, we were able to explore the

inner workings to understand and verify the models.
4. Our research explored adjustments to the models, investigating alterations to the methods.

Having evaluated the DNC (Graves et al., 2016) against the popular LSTM (Hochreiter and
Schmidhuber, 1997) and GRU (Bahdanau et al., 2014), we discovered merits and shortcomings.
We applied the models against a core data structure tasks like copy and lookup tables (Henaff
et al., 2016). DNC analysis coined the term ‘Penny Drop’ that defines a training effect we have
identified as key in training of such models.

Benchmarks against real world problems like MNIST problem (LeCun and Cortes, 2010),
in addition to IMDb sentiment analysis problem (Maas et al., 2011) demonstrated versatility to
more than just algorithmic tasks. We applied the models to sentiment analysis to classify shop-
ping reviews as sarcastic (Filatova, 2012), applying state of the art word embeddings validated
by visualisations (Mikolov et al., 2013; van der Maaten and Hinton, 2008). The conclusions of
Irpan (2016) were consolidated through justifying the difficulty of the Rubik’s cube problem.

Improvements applied to the DNC including regularisations concluded the self regularisation
properties of the models (Pascanu et al., 2012). Distributed learning was explored to form our
topology that maximises utilisation (Abadi et al., 2015, 2016). Profiling and visualisations iden-
tified potential that inspired improvements to the model.

The DNC shows potential in an LSTM dominated field, and we demonstrated solid step
towards bridging modern day computation and neural models. Our research concludes high
potential and demonstrated an improvement that forms a powerful state of the art system.

18

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z. et al. (2015), ‘TensorFlow: Large-
scale machine learning on heterogeneous systems’. Software available from tensorflow.org.
URL: http://tensorflow.org/

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A. et al. (2016), Tensorflow: A system for
large-scale machine learning, in ‘12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16)’, USENIX Assoc., GA, pp. 265–283.

Bahdanau, D., Cho, K. and Bengio, Y. (2014), ‘Neural machine translation by jointly learning to
align and translate’, CoRR abs/1409.0473.

Bengio, Y., Simard, P. and Frasconi, P. (1994), ‘Learning long-term dependencies with gradient
descent is difficult’, Trans. Neur. Netw. 5(2), 157–166.

Chung, J., Gülçehre, Ç., Cho, K. and Bengio, Y. (2014), ‘Empirical evaluation of gated recurrent
neural networks on sequence modeling’, CoRR abs/1412.3555.

Elman, J. L. (1990), ‘Finding structure in time’, Cognitive Science 14(2), 179–211.

Filatova, E. (2012), Irony and sarcasm: Corpus generation and analysis using crowdsourcing, in
‘In Proc. Int. Conf. Language Resources and Evaluation’, ELRA.

Graves, A., Wayne, G. and Danihelka, I. (2014), ‘Neural turing machines’, CoRR abs/1410.5401.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I. et al. (2016), ‘Hybrid computing
using a neural network with dynamic external memory’, Nature .

Henaff, M., Szlam, A. and LeCun, Y. (2016), ‘Orthogonal rnns and long-memory tasks’, CoRR
abs/1602.06662.

Hochreiter, S. and Schmidhuber, J. (1997), ‘Long short-term memory’, Neural Comput.
9(8), 1735–1780.

Irpan, A. (2016), ‘Exploring boosted neural nets for rubik’s cube solving’.

Karpathy, A. (2015), ‘The unreasonable effectiveness of recurrent neural networks’.
URL: karpathy.github.io/2015/05/21/rnn-effectiveness/

Karpathy, A., Johnson, J. and Li, F. (2015), ‘Visualizing and understanding recurrent networks’,
CoRR abs/1506.02078.

Kingma, D. P. and Ba, J. (2014), ‘Adam: A method for stochastic optimization’, CoRR
abs/1412.6980.

LeCun, Y. and Cortes, C. (2010), ‘MNIST handwritten digit database’.
URL: http://yann.lecun.com/exdb/mnist/

Lipton, Z. C., Kale, D. C., Elkan, C. and Wetzel, R. C. (2015), ‘Learning to diagnose with LSTM
recurrent neural networks’, CoRR abs/1511.03677.

19

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y. et al. (2011), Learning word vectors
for sentiment analysis, in ‘In Proc. Meet. of Assoc. for Comp. Linguistics: Human Language
Technologies’, Assoc. for Comp. Linguistics, pp. 142–150.

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013), ‘Efficient estimation of word represen-
tations in vector space’, CoRR abs/1301.3781.

Oraby, S., Harrison, V., Reed, L., Hernandez, E., Riloff, E. and Walker, M. (2016), Creating and
characterizing a diverse corpus of sarcasm in dialogue, in ‘Proc. of the Special Interest Group
on Discourse and Dialogue’, Assoc. for Comp. Linguistics, pp. 31–41.

Pascanu, R., Mikolov, T. and Bengio, Y. (2012), ‘Understanding the exploding gradient problem’,
CoRR abs/1211.5063.

Řehůřek, R. and Sojka, P. (2010), Software Framework for Topic Modelling with Large Corpora,
in ‘Proc. LREC Workshop on New Challenges for NLP Frameworks’, ELRA, pp. 45–50.

Rokicki, T., Kociemba, H., Davidson, M., and Dethridge, J. (2010), ‘God’s number is 20.’.
URL: http://www.cube20.org/

Rumelhart, D., Hinton, G. and Williams, R. (1986), ‘Learning representations by back-
propagating errors’, Nature 323(6088), 533–536.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L. et al. (2016), ‘Mastering the game of
go with deep neural networks and tree search’, Nature 529(7587), 484–489.

Tieleman, T. and Hinton, G. (2012), ‘Lecture 6.5-rmsprop, coursera: Neural networks for ma-
chine learning’, University of Toronto, Tech. Rep .

Turing, A. (1950), ‘Computing machinery and intelligence’, Mind LIX(236), 433.

Turing, A. M. (1937), ‘On computable numbers, with an application to the entscheidungsprob-
lem’, In Proc. London Mathematical Society 2(1), 230–265.

van den Oord, A., Kalchbrenner, N. and Kavukcuoglu, K. (2016), ‘Pixel recurrent neural net-
works’, CoRR abs/1601.06759.

van der Maaten, L. and Hinton, G. E. (2008), ‘Visualizing high-dimensional data using t-sne’,
Journal of Machine Learning Research 9, 2579–2605.

Werbos, P. (1990), ‘Backpropagation through time: what it does and how to do it’, Proc. of the
IEEE 78(10), 1550–1560.

Weston, J., Bordes, A., Chopra, S. and Mikolov, T. (2015), ‘Towards ai-complete question an-
swering: A set of prerequisite toy tasks’, CoRR abs/1502.05698.

Williams, R. and Peng, J. (1990), ‘An efficient gradient-based algorithm for on-line training of
recurrent network trajectories’, Neural Computation 2, 490–501.

Zaremba, W., Sutskever, I. and Vinyals, O. (2014), ‘Recurrent neural network regularization’,
CoRR abs/1409.2329.

20

