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The facial key points problem stems from a br anch of com puter
vision for detecting point of interest locations.

Given an image of a face , pinpoi nt feature keypoints Fig. 1;4. A
competition was standardised at .com as the ‘Kaggle Facial

Keypoi nts Challenge', benchmar king researchers i n a leader boar d.
The challenge drew i nterest from industry players s uch as Google
employees and CERN, all com pe ting to r educe root mean s quared

error RMSE.

Fig. 1: Prediction example from live stream tester

Random grid sear ch [ 1] hel ped to quickly
optimise parameter configura tions with the
help of 3D graphs.
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We validated the CNN m odel for facial keypoints detection. Fast
propaga tions proved useful when applied to time critical
applications, like real time video systems Fig. 1.

Regularisation and pre- processi ng methods helped i n r educi ng

error. Our novel im provement to the visualisati on algorithm Fig. 3
showed promise for better understanding models.

Future research coul d entail scali ng down the model to a more

portable machine and reducing error for outlier cases.

We built a CNN Fig . 5 wi th a Stochastic Gradient Descent algorithm
to supervised train our neural network [2]:

,

Where is a network param eter s tate at itera tion , and we

descend the cost func tion o f mi ni-batch wi th res pect to
network weights , at learning rate towards minimum cost [2].

Regularisation is used to avoi d over-fitting, wher e the m odel fits

the trai ni ng data over the general case. L1 & L2 [2] regularise
network weights; dropout [ 7] uses na tural phenomena to add
randomisation to the networks; early stopping prevents over-training.

The quality of images vary, ranging from over-exposure to
rotations. We tackled image processing as shown i n Fig . 2. We also
augm ented the dataset through ro tations, i ncreasi ng size and

diversity of our training set [3].
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Shortened Terms:
Conv-i – Convolutional layer with i features layers
Pool – Pooling layer
FC-i – Fully connected layer with width i

Fig. 2: Pre-processing 
before and after

In r ecent years, huge s teps in machi ne learni ng have been made ,
thanks to advancements in deep learning.

Deep lear ning is based around buil ding al gorithms tha t can
represent hi gh level abstrac tions in data thr ough algorithmi c

layering. It has enabled the representation of higher level pa tter ns i n
neural networks, at reduced computational cost.

Similar to [5], we developed a convol utional neural ne twork

architecture (CNN) [4] , made powerful by its translation i nvariant
feature detection.

We ex plored depth, as it was s hown to represent higher level

features; and have reduced error in similar architectures [6].

Fig. 3: Random, Grey, Faded-Grey Censors

Fig. 4: Prediction examples
Fig. 5: Convolutional neural network model used in our system

Heat m ap visualisations gave an i nsight i nto how the m odel
learned [8] . We investigated an occlusion algorithm Fig. 3,
comparing censors and developi ng a novel extension tha t pr events

additional edges incurred by the censor itself.

Potential applica tions incl ude: emotion
tracki ng, biometric analysis, generalised
keypoint detection and medical diagnosis.
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