
Optimising Facial Keypoint Detection
With Deep Learning

Student Name: Alastair Breeze
Supervisor Name: Stephen McGough, Noura Al Moubayed

Submitted as part of the degree of MEng Computer Science to the

Board of Examiners in the School of Engineering and Computing Sciences, Durham University
03.05.2016

Abstract —
Context / Background — A humans visual perception of the world is a skill we are constantly trying to
understand in the field of computer vision. In particular, the ability to de-construct an image and analyse
keypoints/landmarks is fundamental to many vision problems. Facial keypoints detection, is aimed at de-
tecting facial feature points and has been the focus of significant research efforts thanks to the multitude of
applications in areas such as biometric analysis, expression detection and medical diagnosis. In addition,
the problem generalises to the further applications of generic keypoint detection.

Aims — The project aims to push current computer vision boundaries with the application of deep learn-
ing techniques to optimise the facial keypoints problem. Deep learning has become a popular technique
for representing high level abstractions in data through the layering of complex algorithms. Our solution
shall train a deep neural network with supervised learning from a labelled training set to accurately predict
keypoint locations of unlabelled data with high precision, validating deep learning as a viable model to
the problem.

Method — Deep learning has become a powerful branch of modern machine learning, prominent in
computer vision problems due to its impressive pattern recognition performance. With advancements in
general purpose graphics processing unit (GPGPU) computing, we create a large convolutional neural
network (CNN), applying state of the art deep learning optimisations and exploring data pre-processing
enhancements and augmentations. We develop a novel algorithm for visualisation heat-maps attempting
to directly understand and improve the model.

Results — We have trained and optimised a range of CNN configurations to develop a model that can
predict at a high precision against an error function. The results are benchmarked against models from
data scientists from around the world, validating the successes of our model. We found that regularisation
techniques have shown promise, whilst others showed minimal improvement. Our visualisation heat-maps
validated our model, with potential shown for applications of such an algorithm.

Conclusions — A CNN model has been demonstrated as a powerful model for the facial keypoints de-
tection problem, performing well in our tests and against researchers around the globe. Our model is
fine-tuned for the generic case, but struggles with outliers that differ from the classic dataset. We outline
ideas for future scope in the problem, discussing potential research areas that could enable the next level
for facial keypoints detection.

Keywords — Computer Vision; Facial Keypoint Detection; Deep Learning; Machine Learning; General
Purpose Graphics Processing Unit (GPGPU); Convolutional Neural Network (CNN); Regularisation

1

I INTRODUCTION

Computer vision has consistently driven artificial intelligence (AI) research as a means to test and
benchmark machine intelligence. In recent years we have made huge leaps forward in the field
of machine learning (ML) thanks to the advancements in the sub-field of deep learning. Deep
learning has become a hot topic based around building algorithms that can represent high level
abstractions in data through algorithmic layering. Such high level abstractions have enabled re-
searchers to represent higher level features and patterns in neural networks at less computational
cost at improved accuracy than ever before. An enticing feature of deep neural networks is how,
once trained, it can propagate predictions fast, making it popular for intelligent systems.

In this work we investigate the facial keypoints problem: Given an image of a face, pinpoint
the locations of particular feature keypoints (sometimes referred to as landmarks) eg. tip of the
nose, centre of the eye. A competition was formed by Kaggle, a data-science competition organ-
iser, to standardise this problem1, allowing researchers to benchmark approaches against other
researchers from around the world. The Kaggle dataset contains images of both labelled and
unlabelled keypoints data, for example see in Figures 1(a-g) input samples. Using the labelled
data, the system can be trained to predict labels for the test data set, for semi-marking by the
competition2 against a root mean squared error (RMSE) objective function:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (1)

where ŷ is the predicted value and y is the ground truth, with n as the number of sample points.

The difficulty of the challenge lies in the uncertainty that follows with each image, where
each can yield hidden challenges like orientation, scale, image quality, facial obstructions or
generally the facial expression in question. The system needs to be robust enough to be capable
of dealing with such extreme examples. In addition to this, we have a relatively small dataset
of roughly 2000-7000 training examples for each feature in comparison to other deep learning
applications that can have of order millions of training data due to the nature of their sources.

A Potential Applications

Keypoints are fundamental to what make up vision as we know it. They can be defined on
any objects and have applications in an array of problems. Through research into the facial key-
points detection, researchers hope to unlock secrets that can be re-applied to the general problem.
Specifically, facial keypoints detection yields potential applications in real world problems:
• Emotion Tracking — Knowing facial keypoints unlocks insight into a person’s emotion.

Research by companies like Microsoft have applied such research to alarm clocks where a
specific facial emotion must be made to unlock the phone, proving consciousness3.

1‘Kaggle Facial Keypoints Challenge’, https://www.kaggle.com/c/facial-keypoints-detection (2016)
2A process of marking 50% of the submission until the end of the competition to add uncertainty.
3Microsoft Project Oxford https://www.microsoft.com/en-us/garage/workbench-apps-details/

Mimicker-Alarm/MimickerAlarm.aspx (2016)

2

• Biometrics/Facial Recognition — Facial keypoints are core to what make up an identity.
A system could be developed to ‘fingerprint’ a persons keypoints as a biometric system or
in cohesion with modern facial recognisers, adding additional levels of security like unique
facial expression to authenticate.
• Medical Diagnosis — In medicine, facial keypoints could be used in stroke detection. A

common early sign of a stroke is facial features becoming malformed. Every second is
vital, and being able to detect the early signs can significantly reduce damage with some
recent unpublished research by the Hong Kong Polytechnic University4 claiming to have
made capable systems in the area.

B Project Aims and Deliverables

The project tackles the research question: ‘How well can we optimise the facial keypoints prob-
lem using a CNN model with state of the art regularisation techniques and developing new algo-
rithms?’ We set out to satisfy deliverables in Table 1, we set out to achieve project aims:

1. Validating a CNN as a viable model for the facial keypoints problem.
2. Optimising the CNN model to competitively challenge researchers from around the globe.
3. Exploring optimisation, regularisation and visualisation methods to perfect our model.

Table 1: Project Deliverables

Deliverable Type
Data Management System — a system that efficiently reads the training &
testing data into relevant data-structures and memory

Minimum

Deep CNN Trainer — a system that can use supervised learning to train a CNN Minimum
Checkpoint Management System — a storage system that can manage
program states

Minimum

Prediction System — a system that can load a trained network state to make
keypoint predictions on input data

Minimum

Pre-Processing System — an image processor that enhances and unifies data Intermediate
Data Augmenter — artificially expanding our given datasets, or introducing
new datasets in attempt to broaden our training data

Intermediate

Output Management & Visualisation System — an interface to analyse
performance visualisations

Intermediate

Deep Restrictive Boltzmann Machines (DRBN) Pre-Trainer — a system that
can pre-train the network before fine-tuning as an initialisation technique

Advanced

Live Stream Tester — A web-cam based program to real time test the system Advanced

II RELATED WORK

In this section we discuss the current facial keypoints problem research, an increasingly popular
problem in recent years since the standardisation of the Kaggle challenge1. We then expand our
literature review into generalised deep learning research including architectures, optimisations

4 ‘Novel computer intelligence system for acute stroke detection.’ www.sciencedaily.com/releases/2015/05/
150512112341.htm (2016)

3

and visualisation techniques that forms the base of our model.

A Facial Keypoints Problem

We begin with the analysis of facial keypoints detection systems which do not utilise deep learn-
ing, namely (Belhumeur et al. 2011, p.545) that standardised a dataset known as Large Face Parts
in the Wild (LFPW) dataset (now part of the Kaggle1 challenge). Belhumeur et al. discussed a
support vector machines (SVM) approach with moderate successes, but most interestingly an
optimisation technique used was synthesising and expanding the dataset by rotations, a common
technique we use later in this section.

Initial research on a deep learning approach to the facial keypoints problem was from (Nouri
2014). Nouri investigated a CNN architecture built using the open source Lasagne module5, a
Theano (Bergstra et al. 2010, Bastien et al. 2012) based Python module. The approach using
a regularised LeNet-5 model from (Lecun et al. 1998). The module abstracts complexity away
from the developer, something we set out to avoid.

In 2015, the Int. Conf. Image Processing witnessed an influx of papers on the facial keypoints
problem including (Kimura et al. 2015, p.3) investigating mini-batching techniques including
augmentations to help expand the dataset, showing positive results addressing the small dataset
issue. Image augmentations were a common theme, also mentioned by (Yamashita et al. 2015)
who similarly used rotations and scaling on their training set.

B Deep Neural Network Architectures

We broaden our search into general deep learning research, beginning with classic ML computer
vision problem MNIST: classifying numeric digits [0..9], given a labelled dataset6 of 70, 000 ex-
amples. (Lecun et al. 1998) played a key part in the research problem through the popularisation
of a CNN model, a common component in deep learning architectures today that enables trans-
lation invariant feature detection, a component that laid the foundation to our model.

ImageNet is a modern, and very much unsolved and expanding, challenge (Russakovsky et al.
2015). The annual challenge entails problems like object classification or description generation
and hard problems that require the most powerful deep learning architectures we know today.
An early ImageNet contender was (Krizhevsky et al. 2012), their work uses a CNN model with
rectifier linear unit (RELU) activation functions as a means to accelerate learning. It claims to
accelerate learning to a defined error by roughly 6 times, a characteristic we experimented in
our network. Recent ImageNet submissions include the ‘GoogLeNet’ (Szegedy et al. 2014), a
radical approach to CNN architectures that use branching streams of differing convolutions, an
approach producing powerful results thanks to it’s scale invariant convolutions. A more classic
ImageNet submission is the OxfordNet/VGG Net (Simonyan & Zisserman 2014), a model we
took inspiration from in our architecture. The model uses a seemingly classic CNN architecture
whilst pushing the levels of depth to superb performance.

5‘Lasagne’, http://lasagne.readthedocs.org/en/latest/ (2016)
6‘The MNIST Database of handwritten digits’, http://yann.lecun.com/exdb/mnist/ (2016)

4

C Optimisation Research

Regularisation algorithms optimise our model and help prevent over-fitting, a problem when a
system fits the training data over unseen testing examples. Microsoft researcher (Bottou 2012)
draws on a selection of different neural network optimisation techniques. One of which is the
rate at which we traverse the state space, known as the learning rate. Bottou discusses dynamic
learning rates that change as time goes on to help accelerate to a minimum error.

Another common technique is dropout (Srivastava et al. 2014), this technique relies on natu-
ral phenomena to optimise the network by training on random subsets of the neurons and praised
by many (Krizhevsky et al. 2012).

Early stopping is the process of stopping training before the network over-fits the data. In
the Theano documentation7, the developers use a patience concept, however this syntax soon
became unnatural to understand. (Prechelt 2012, p.2) discuss early stopping in a simpler fashion,
an approach we build on by simply stopping when we no we can no longer consistently reduce
error against our validation set.

Network initialisation is fundamental to finding a state that will converge using a stochastic
gradient descent (SGD) training algorithm. (Glorot & Bengio 2010) formalised the industry ac-
cepted method for TANH activation functions, but a debated discussion with regards to the RELU

activation function. A further step from the random initialisation includes using deep restrictive
Boltzmann machine (DRBM) to pre-train the network in an unsupervised manner to statistically
establish our features before fine tuning by our classic SGD model. The model relies on built up
restrictive Boltzmann machines (RBM) stacked together to mirroring the core network weights.
(Hinton 2006) pioneered DRBM research, a technique that was applied to keypoints challenge by
(Haavisto 2013) pre-training followed by supervised fine tuning. The approach however suffers
when compared to other Kaggle entries, limited by it’s architectural simplicity. Stanford Univer-
sity (Lee et al. 2009) investigates extending DRBM’s to CNN models that could potentially build
onto our complex CNN model see Figure 1.

Another pre-training technique was also explored by (Yamashita et al. 2015), who investi-
gated using a simplified version of the problem to classify parts of the face where the network
can then be transferred as the starting state for the fine-tuned keypoint analysis.

D Visualisation Techniques

Visualising deep neural networks allow us to understand the hidden logic to the network’s intelli-
gence. One of the best visualisation papers was (Zeiler & Fergus 2013), where novel techniques
were explored for the visualisation of convolutions. The occlusion technique has grown popular
in the research community, used by Google (Weyand et al. 2016) on a location classification
problem and Facebook (Sun et al. 2015) in the ImageNet object classification and localisation
problem. Google, like Zeiler and Fergus, implements the simple form of the algorithm, while
Facebook uses a more refined approach that has great success in localising objects in images.

7‘Deep Learning Tutorial’, http://deeplearning.net/tutorial/deeplearning.pdf (2016)

5

Little detail into the algorithms are published, and thus is an avenue we shall further define and
justify formally. We investigate ways to apply it back into the model as an optimisation technique.

A key observation in keypoint recognition by (Hou et al. 2015), was that you don’t necessarily
use the whole image in order to pinpoint a keypoint best. Hou implemented a cascading network
where a prediction to relocate the zone of the image, and recurring until we are satisfied with
the keypoint confidence. Similarly, we will be attempting to use our visualisation system to
probabilistically calculate each pixel’s importance, and maximising our model around this.

III SOLUTION

Our solution is composed as a compilation of optimisations to maximise our model prediction
accuracy. We begin outlining our base model, deriving optimisation techniques, finished by
defining our testing and visualisation system.

A Deep Learning Foundation

In this sub-section, we discuss a base model that meet our minimum deliverables from Table 1.

A.1 Deep Neural Network Architecture

Our final model consists of 15 connecting layers shown in Figure 1. By building on the work of
(Lecun et al. 1998), we introduced an additional convolutional layer to maximise depth for more
advanced and complex pattern detection (Simonyan & Zisserman 2014).

Input Layer

Conv-128
Kernel: 5x5
Activation: Tanh

Conv-256
Kernel: 7x7
Activation: Tanh

Pool Pool Conv-512
Kernel: 9x9
Activation: Tanh

Pool FC-4096
(RELU)

FC-4096
(RELU)

Linear
Regression
(Sigmoid)

Output
(x,

y)

Pre-processor

Raw Data Dropout

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Shortened Terms:
Conv-i – Convolutional layer with i features layers
Pool – Pooling layer
FC-i – Fully connected layer with width i

Figure 1: CNN architecture of our solution

Fully Connected Layers (Hidden and Linear Regression) — A simple neural network
model taking the form of Equation 2(a), using activation functions of form Equation 3(a-c).

(a) y = ACTIVATION(Wx+ b); (b) yk = ACTIVATION((W k ∗ x) + bk), (2)

where x is size n, y is size m, W is a n × m weight matrix, b is a vector size m. The second
function, as described by Theano7, differs in that we are in higher dimensions of multiple feature
kernels k that convolve. for different convolutional features. ACTIVATION can take the form

6

using x as an input neuron:

(a) SIGMOID(x) =
1

1 + e−x
; (b) RELU(x) = MAX(0, x); (c) TANH(x) =

1− e−2x

1 + e−2x
,

(3)
Convolutional Layers — We convolve different feature kernels to the images, combining

three architectural ideas to ensure degrees of shift, scale, and distortion (Lecun et al. 1998).
Each convolutional layer has a defined number of kernels of certain size. Each different kernel
convolves TODO

A.2 Model Training

We employ a mini-batch Stochastic Gradient Descent (SGD) algorithm as a means to supervised
training our network, described by (Bottou 2012):

wt+1 = wt − µ
1

n

n∑
i=1

∇wQ(zi, wt), (4)

with wt representing the weight parameters at time-step t, µ is the learning rate, zi is the ith
training example, Q(zi, wt) is the loss function given the input at given parameters; in our case
it is the RMSE from Equation 1. ∇wQ is the gradient of the loss function with respect to the
network parameters w. The function is averaged over the n training examples, following that
with a sufficiently small learning rate µ the algorithm will achieve linear convergence.

The SGD algorithm is a flavour of the gradient descent, where each iteration estimates the
gradient based on a randomly picked example zt rather than computing the gradient averaged
over all training examples. It can also be noted that it is possible to extend the SGD as a ran-
domised mini-batch algorithm by picking a small subset to average over zt:

wt+1 = wt − µt∇wQ(zt, wt), (5)

where µt represents a potentially dynamic learning rate of the algorithm at time t. The rate
at which we change our network parameters to descend to a local minimum is fundamental to
training a network. Too high and we risk potentially skipping a minima, too low and our network
will converge too slow. (Bottou 2012) discusses a dynamic learning rate of the form:

µt =
µ0

1 + µ0λt
, (6)

with t representing time (iteration) and µ0 the initial learning rate, λ are constants. We begin at a
high learning rate in order to traverse the state space at a fast rate, then gradually slow the rate in
order to focus in on an optima parameter set for the problem.

A.3 Network Initialisation

Ideally we want a network initialisation that will converge to a minimum RMSE in the quickest
time, where choices of method is dependent on the activation function. (Glorot & Bengio 2010)

7

showed that for TANH activation functions, random initialisation performs well in the range:

XAVIER RANGE =

[
−
√

6

fanin + fanout
,+

√
6

fanin + fanout

]
, (7)

given fanin, fanout are the number of input neurons and output neurons respectively.

Universally accepted for TANH activation functions, however some of our model uses RELU

from Equation 3(b). RELU has been subject to discussion in the research community over initial-
isation, typically following a similar XAVIER RANGE found to also converge cleanly.

DRBM could have been used pre-train the networks (Hinton 2006), however upon implemen-
tation we found this was outside of the scope of the project with anticipated gains being trivial
improvement. It would also affect the complexity of our model and thus require us to choose a
simpler architecture like (Haavisto 2013), that could introduce a higher error into the model.

B Regularisation Techniques

Avoiding over-fitting the model is ensuring representation of the general case over the training
data and is a heavily researched problem area. In this subsection we explore some of the algo-
rithms that help to accomplish to build on-top of our foundation from Section III.A.

L1 & L2 Regularisation — The most common techniques are L1 & L2 regularisation
where we add a value with respect to the parameter weights to the cost function, discussed by
(Bottou 2012). The clearest description comes from researchers behind Theano7 where the tech-
nique encourages smooth network mappings by penalizing large parameters values, aiding to
decrease the non-linearity that the network models.

Dropout — Natural phenomena is commonly found in optimisation techniques, dropout
being a key example of this. (Srivastava et al. 2014) discusses the idea and show its successes
and is a heavily used regularisation in the deep learning community. The method works by taking
input neurons X , and for every neuron outputting the value with a probability p, and 0 with 1−p
as shown in Equation 8 where X is the n dimensional input with (i1, ..., in) as the n-dimensional
coordinate and p the probability of dropping a neuron. We implement this technique on the
output of every convolutional and hidden layer in our model.

DROPOUT(X, p)(i1,...,in) =

{
X(i1,...,in), if RAND() < p

0, otherwise,
(8)

Early Stopping — Simplicity was key when choosing an early stopping algorithm, building
on (Prechelt 2012, p.2) we opted for a method that tracks when the network is no longer making
improvements every k epochs. We trivially create a refreshing counter that monitors this.

C Data Optimisation

Input data strongly influences the model we train. We discuss some of our pre-processing tech-
niques that enabled us to enhance and augment images to maximise the training accuracy.

8

C.1 Image Pre-Processing

Improving image quality and reducing noise helps make keypoints clearer and therefore easier
to predict.

(c)

(d)

(a)

(b)

Original Processed

Figure 2: examples of different
image processing techniques be-
fore and after

Compression Artefact Removal — Some of the im-
ages suffer from block areas known as compression artefacts
incurred through lossy compression algorithms like JPEG.
By using discrete frequency transform (DFT) and then fil-
tering, we can remove the high frequency details (Solomon
& Breckon 2010, pp.135–139) making up the artefacts.
Clear improvement is seen in Figure 2(a), by performing
the algorithm before sharpening to avoid artefacts amplifica-
tion.

Smoothing — Reducing noise in non-edge regions of an
image can help draw attention away from the non-edge ar-
eas and to enhance the actual edge detection. We employed
a bilateral filter (Tomasi & Manduchi 2000) to smooth skin
areas whilst retaining edge definition as shown in Figure
2(b).

Sharpening — Deep learning is essentially pattern detec-
tion using edges as the basis. We enhanced edges through un-
sharp filtering (Solomon & Breckon 2010, p107) as demon-
strated in Figure 2(c).

Equalisation — The next step of the pre-processing is equalisation, trying to bring the con-
trast and brightness into a standard uniform range, dealing with under-exposed and over-exposed
images. We opted for a contrast limited adaptive histogram equalisation (CLAHE) (Solomon &
Breckon 2010, p.78). Figure 2(d) demonstrates the effect of this algorithm.

C.2 Maximising and Expanding the Dataset

Ensuring the best use of our limited dataset is a vital part to our system. We now discuss the
techniques and algorithms used to allow us to achieve this.

Maximising Feature Data — A twist of the competition dataset1 is that some of the input
data contains incomplete labels. A trivial solution to this used by (Nouri 2014) to discard images
that don’t provide a full set of data, an approach that instantly cuts potential data from roughly
7000 to around 2140 examples for certain features. The data originates from sources: BioID Face
Database8 and the LFPW (Belhumeur et al. 2011) dataset. As LFPW is only capable for four fea-
tures, that dataset is discarded. We split each facial feature into sub-problems, by separating the
problem, we maximise the number of data samples for each feature.

8‘BioID Face Database’, https://www.bioid.com/About/BioID-Face-Database (2016)

9

Facial Symmetry — Facial symmetry is a neat characteristic we can exploit in our system
initially explored by (Nouri 2014). We notice training the left eye is the same as training the
mirror of a right eye, which can be used for both training set expansion and also predictions. A
similar approach can be taken with other symmetric features and can roughly double our training
data per feature, reducing processing efforts in doing so.

Augmentations — Artificially expanding our dataset is a simple way to increase size through
augmenting the input with image manipulations such as rotations and scaling. We focus on
rotations (Kimura et al. 2015), augmenting each training image through rotations around centre:

ROTCOORD((x, y), r) =

[
x′

y′

]
=

[
(x− w

2
) cos(r)− (y − h

2
) sin(r) + w

2

(y − h
2
) cos(r) + (x− w

2
) sin(r) + h

2

]
, (9)

given r as an angle in radians and w, h are the width and height of the image respectively.

We experimented with algorithms that attempt to utilise the random rotations nature of our
dataset. We predict the keypoint at multiple rotations forming a consensus over our results.

PREDICTUNIFORMCONSENSUS(X) =
1

2φ

φ∑
r=−φ

ROTCOORD(CNN(ROTIMAGE(X, r)),−r),

(10)

PREDICTGAUSSIANCONSENSUS(X) =
1

2πσ2

φ∑
r=−φ

e−
r2

2σ2 ROTCOORD(CNN(ROTIMAGE(X, r)),−r),

(11)
given φ as the rotation range [−φ, φ] in degree steps. σ as the Gaussian distribution parameter.

D Visualisation and Validation Systems

Deep learning systems have extensive number of outputs for analysis including logs, tables,
prediction visualisations, graphs and more. We handle such large amounts with web data man-
agement system that can visualise our outputs in an interactive fashion such as graphs, images.
In this sub-section we discuss some of our advanced visualisations we output.

D.1 Censor Heat-map Visualisations

Visualising performance of a deep neural network is a vital component in the optimisation pro-
cess development. Research has been made in the field (Zeiler & Fergus 2013), but the proposed
method aims mainly at the analysis of features with respect to classification problems, where we
are performing a linear regression. We propose a more advanced algorithm that builds on a sim-
ple occlusion method by Zeiler and Fergus with potential to be applied to a range of problems.
We refer to our approach as a censoring algorithm due to nature of our occlusion techniques.

Let our input image be X; where we wish to know the importance of pixel (x, y). We

10

calculate using OCCLUSION(X)(x,y) from Equation 12, that can be applied to a heat-map.

OCCLUSION(X)x,y =
∑
σ∈Q

n∑
i=1

n∑
j=1

1

2πσ2
e−

(x−i)2+(y−j)2

2σ2 |CNN(CENSOR(X, i, j, σ))− CNN(X)|,

(12)
using CNN(X) as a black box function that predicts keypoint coordinate, in our case this is a
convolutional neural network. σ’s are defined from the list Q. CENSOR(X, i, j, σ) is our abstract
censoring function that will return an occluded image of X at censor coordinate (i, j) with a σ
as the width of the censor:

CENSORNOISE(X, i, j, size)x,y =

{
RAND(), if i < x < i+ size, j < y < j + size

Xx,y, otherwise
(13)

CENSORGREY(X, i, j, size)x,y =

{
α, if i < x < i+ size, j < y < j + size

Xx,y, otherwise
(14)

given α as an arbitrary grey value, typically 128.

CENSORBLUR(X, i, j, size)x,y =


µ∑

u=−µ

µ∑
v=−µ

X(x+u),(y+v)
1

2πσ2 e
−u

2+v2

2σ2 , if i<x<i+size
j<y<j+size

Xx,y, otherwise
, (15)

with σ representing a value for the Gaussian, µ is the size of the Gaussian filter.

D.2 Live Stream Testing System

Real time evaluation is a powerful tool that allowed us to evaluate the system, useful for observing
the systems reactions. We implemented a UDP based client-server model to be run on a GPGPU
cluster as it becomes infeasible loading 8 networks each of roughly 300MB GPGPU memory.
The initial facial detection was performed through a simple cascade classifier (Szeliski 2011,
pp.658–668), passing greyscale cropped faces to the GPGPU cluster server.

E System Implementation

Our solution is based on the Theano programming library (Bergstra et al. 2010, Bastien
et al. 2012), a highly optimised Python ML library. Python allowed us to implement fast data ma-
nipulations for example augmentations and image processing, in cohesion with all the Theano’s
highly GPGPU optimised ML functions.

IV RESULTS

Optimisation techniques require tuning to maximise and justify their usefulness. To do so, we
investigate parameter tuning with methods that allow tuning multiple parameters: grid search;
randomised grid search (Bergstra & Bengio 2012). Results were conducted with Python and
Theano9 through submission to a high performance GPGPU-cluster10.

9Python: 2.7.7, Theano: 0.7.0.dev-RELEASE
104× Intel Xeon CPU E5-2650 v3 @ 2.30GHz; 64GB DDR3 RAM; 2× Nvidia Tesla K40c GPUs, 12GB GDDR5

each, 2880 CUDA cores each

11

A Keypoint Detection

Samples of the predictions of our model are shown in Figure 3. Sub-images (a,b) display near
perfect predictions, despite the different orientations. Figure 3(c) also shows a low error, despite
orientation and occluding glasses. An obstructing fringe in (d) caused a high level of error. This
shows the model tends to overfit their eyebrows which are likely to be the cause of the poor result.

(a) (b) (c) (d) (e)

Figure 3: trained CNN predictions examples. Testing Data (a-d); Live Stream Tester (e)

Live stream testing11 is demonstrated in Figure 3(e) showing a close prediction to the reality
despite obscure facial expression/morphing. The solution achieved nearly 1 frame per second,
bottlenecked mainly by the GPGPU memory loading speeds. This shows that the solution does
have the capability to be extended to the applications discussed in Section I.A.

B Censor Heat-Map Visualisations

Having refined the algorithms involved in the heat-map generation, we now test different config-
urations. In Figure 4(a-e) we consider the 5 techniques CENSORNOISE flat, CENSORGREY flat,
CENSORBLUR flat, CENSORGREY faded, CENSORBLUR faded respectively. It is immediately
clear that the CENSORNOISE creates a large effect zone, confusing the CNN and not localis-
ing very closely. The CENSORGREY and CENSORBLUR perform similarly, both displaying the
effect of different facial features. We argue that the CENSORBLUR displays higher contrast, a
desirable characteristic of a heat-map.

The faded effect against the plain square effect of the censor, gathers slightly smoother and
refined heat-maps to features. We expect this due to the effect that a plain square censor impli-
cates a new edge around the censor, not incurred by the faded censor. This novel addition to the
(Zeiler & Fergus 2013) algorithm could apply well to localised classification problems like (Sun
et al. 2015) where it is also required to localise the classified objects.

Occasionally censoring pixels were found to benefit the model. We attempted to form an
algorithm to calculate relative pixels to the feature that probabilistically are better censored.
Upon testing the hypothesis we could achieve roughly 0.001% improvement, unfortunately not
significant enough for us to claim as a viable optimisation.

11Youtube ‘Live Stream Tester’ https://youtu.be/Q5xlQd4KeFE (2016)

12

(a) (b) (c) (d) (e)

Figure 4: examples of different censoring heat-maps

2 Hidden Layers
1 Hidden Layer

0.0085

0.009

0.0095

0.01

0.0105

2 3

Convolutional Layers

V
al

id
at

io
n

R
M

SE

Figure 6: Different architectural depths on
the best validation RMSE at 100 epochs

0 1 2 3 4
0.8

0.9

1

1.1

1.2
·10−2

Breadth Factor
V

al
id

at
io

n
R

M
S

E

Hidden Layer Width
Convolutional Kernel Features

Figure 7: Different network widths on the
best validation RMSE at 100 epochs

C Deep Neural Network Architecture

Our architecture scale yields configurations that we want to tune to minimise error whilst remain-
ing computationally feasible.

Activation Functions — Core layers to the network architecture required activation func-
tions to their resulting output. We compare SIGMOID or RELU from Equation 3(a,b) in Figure 5,
corroborating with (Krizhevsky et al. 2012) where RELU is claimed to accelerate learning.

0.00933RELU
0.01366SIGMOID

0 0.01 0.01999
Validation RMSE

Figure 5: Different activation func-
tions on hidden layers best validation
RMSE at 100 epochs

Depth vs. Breadth — An underlying question
when designing a deep learning architecture is depth
vs. breadth. (Nielsen 2015, ch4) discusses how a single
layer is capable of representing any function, yet it is
depth that can represent higher level pattern recognition
at reduced computational cost (Sutskever et al. 2013). In
our system we have the functional requirement to create
a system that can be trained in just a few days.

Depth in the convolutional and hidden layers are shown in Figure 6. Due to the nature of the
96 × 96 input images, 3 levels of convolution and pooling is a sensible and reaches outputs of
size 6× 6 = 36 neurons, a manageable number for fully connected layers. The chart emphasises
the improvement of 3 convolutional layers over 2 by gaining roughly 8% RMSE reduction. We

13

0 10 20 30 40 50 60 70
0

1

2

3

4
·10−2

Epoch

V
al

id
at

io
n

R
M

S
E

Learning Rates
Dynamic

0.35
0.25
0.15
0.05

Figure 8: Different learning rates on the
best validation RMSE

0 20 40 60 80 100
0

1

2

3

4
·10−2

Epoch

V
al

id
at

io
n

R
M

S
E

Batch Sizes
20
40
60
80

100
120

Figure 9: Different batch sizes on the best
validation RMSE

test hidden layer depth in a similar way, comparing 1 vs. 2 layers (not including the final linear
regression layer). Figure 6 displays lower improvement of around 1%, a welcomed improvement,
however we opted for 2 layers to focus computing power elsewhere.

Breadths are visualised in Figure 7. (Szegedy et al. 2014) follows the internal structure we
looked to replicate, starting convolutions small progressing to larger and more complex patterns
increasing sizes and amounts of our kernels. We consider 3 kernel values: {[64a, 128a, 256a] :
∀a ∈ [1

2
, 1, 2]}, finding significant improvement at the highest, but at computational cost that

makes it infeasible to continue expanding. Figure 7 shows small but gradual improvements as
we scale the number of hidden layer neurons. At around factor 4 of the original 1024 neuron
widths, we settle at max computable in a day.

D Regularisation Optimisations

Optimising regularisation techniques at parameter configurations are investigated.

Learning Rate — A high learning rate can help with convergence as shown in Figure 8
where it is visible see the early benefits of a learning rate in the range of 0.3. As the network
converges, we see erratic fluctuations as the high learning rate struggles to converge to a local
minima. It then makes sense to follow a lower learning rate, in the range of 0.1, made possible
by a dynamic learning rate following Equation 6 from (Bottou 2012). We configure our learning
rate to 0.3 at start: mu0 = 0.3. We reduce to a learning rate of 0.1 at around 50 epochs, en-
tailing λ = −0.4 and as our starting parameter. The effects can be seen in Figure 8, following
a similar descent to that of 0.3, yet demonstrating at a less erratic fluctuations at around epoch 40.

Mini-batch Size — Our mini-batch size is another component that affects speed of learning.
Figure 9 visualises clear correlation between lowering batch size and consequent rate of learn-
ing. When the batch size is 20, the network converges fast resulting in being unable to sustain
learning and triggering early stopping. Instead we want a gradual learning rate, more like those
of 40 and 60. For this reason we choose 50 as our desired mini-batch size.

14

0
0.005
0.01
0.015
0.02
0.025
0.03

0

0.00001

0.0001

B
es

t V
al

id
at

io
n

R
M

SE

Figure 10: A 3D surface plot of L1, L2 fac-
tors using grid search against best validation
RMSE at 70 epochs

Figure 11: A 3D surface plot of dropout pa-
rameters using random grid search against best
validation RMSE at 70 epochs

L1 & L2 — After experimenting with different L1 and L2 factors in Figure 10, we found
L1 to detriment the model. We could potentially have opted for even lower L1 but didn’t seem
necessary. L2 did show small reduction to the error, finding L2=0.0001 to be a desirable factor.

Dropout — 3D surface plot’s allow us to optimise two parameters in unison. Figure 11
represents a randomised grid search (Bergstra & Bengio 2012) performed on the dropout to
convolutional and hidden layers. We randomly choose the two parameters between [0.4 − 1.0],
finding error minimal at roughly 0.7 for convolutional layers and 0.6 for the hidden.

E Data Optimisation

E.1 Image Pre-Processing

Different pre-processing algorithms entail varied improvements detailed in Table 2. Improve-
ment was found from all techniques, culminating in a nice overall improvement.

Table 2: Comparison of image processing techniques on best validation RMSE at 80 epochs

Technique Best Validation RMSE Percentage Improvement
Compression Artefact Removal 0.00970 0.41
Smoothing 0.01001 0.24
Sharpening 0.00990 3.51
Equalisation 0.01017 1.41
All 0.00952 5.29

Unsurprisingly, we gain the most reward from the sharpness filter as deep learning is funda-
mentally about edge detection. This is shortly followed by equalisation, an algorithm that helped
bring the images into similar value ranges when under or over-exposed. Compression artefact

15

removal shows small improvement, helping before sharpening to deal with a problem that is am-
plified by the sharpening. Smoothing has a smallest effect by cleansing noisy areas like skin, but
in some cases resulting in the low improvements demonstrated.

E.2 Augmentations

0 2 4 6 8 10 12
0.92

0.94

0.96

0.98

1
·10−2

Rotation Factor f

V
al

id
at

io
n

R
M

S
E

Figure 12: Different rotation factors
on best validation RMSE at 90 epochs

Rotations could have been randomly distributed. We in-
stead maximise rotation variance of each training da-
tum by duplicating it in a memory manageable 5 ori-
entations: (−2f,−f, 0, f, 2f) for some constant f ra-
dians. Figure 12 displays the effect of different f
on our model, concluding best validation fit at f =
4.

Testing our model with augmentations was at-
tempted. Small tests on small subsets of data concluded
a small rotations of [−2..2] using a Gaussian consensus
function was better than uniform. In testing application
we achieved only 0.157% improvement.

F System Performance

60CPU
2457GPGPU

0 900 1800 2700
Iterations / Minute

Figure 13: Training example iteration frequency

GPGPU over CPU performance was un-
precedented, Figure 13 exhibiting roughly a
40× speed-up in our system, justifying op-
timisation claims from (Bastien et al. 2012,
p.7).

V EVALUATION

In this section we discuss the strengths and limitations of the system, relating back to the original
research question: ‘How well can we optimise the facial keypoints problem using a CNN model
with state of the art regularisation techniques and developing new algorithms?’

A Strengths

The prediction performance on the model was excellent, achieving 2nd place in the world Kag-
gle challenge rankings1(December 2015). We begin by evaluating the strengths that allowed the
model to achieve such low error levels.

Figure 14: Kaggle leaderboard December 2015

Our modular approach made it easy
to manage data, program states forming
a strong foundation to meet the minimum
deliverables of our project with ease. Con-
volution was an effective tool in feature detection, where translation invariance proved advanta-
geous for minimising error. We showed that by increasing depth and breadth into our model, we

16

reduce the testing error but at computational cost to the system.

Regularisation approaches significantly improved the model, with techniques like random
search and grid search allowing for easy parameter optimisation (Bergstra & Bengio 2012),
and our output management system12 made it clear analysing output data. Dropout (Srivastava
et al. 2014) was the most useful, considerably reducing our models overfitting. Early stopping
also tested as a vital method in our algorithm helping to ensure we don’t over train the model.

Data optimisation deliverables both helped to regularise the model. Impressive improve-
ments were demonstrated by the training data augmentations helping fit the testing set. Image
pre-processing algorithms verified the importance for high quality input data.

Our CNN model is significantly fast to test as demonstrated by the the live stream testing
system deliverable, bottlenecked by network latency and GPGPU memory transfers yet capable
of achieving a frame per second streaming. This makes it ideally suited to the potential ap-
plications defined in Section I A. Our solution is versatile and modularised, making it ideal for
re-application to other keypoint problems or more general deep learning. Python was a very pow-
erful language, allowing for great data management and image processing to feed into the model.

We demonstrated an extension to a simple occlusion algorithm by (Zeiler & Fergus 2013).
Our approach showed a novel idea that suppresses occlusion induced edges, arguably improving
the localisation of the heat-map. This achievement has potential in other deep learning problems
due to the improved localisation of the approach.

B Limitations

Our model fails to predict facial keypoints of outlier test example, and by using a RMSE objec-
tive function from Equation 1 we amplify large errors into our score. For example, Figure 3(d)
demonstrates an inaccurate prediction likely due to the eyebrows being covered by hair.

The high complexity of our model entailed limiting us to not using pre-training techniques
such as DRBMs (Lee et al. 2009). (Haavisto 2013) researched DRBMs on a simplified fully con-
nected model with some successes on the keypoints problem but achieving 3.45612 RMSE on
the competition, much weaker than the performance of our model at 1.85774 using convolutions.
For this reason we explored the possibility of the deliverable, but decided against implementation.

The Kaggle dataset was not perfect, consisting of two different datasets: BioID Face Database8;
LFPW (Belhumeur et al. 2011) dataset. There exists discrepancy between particular features like
the nose and their location on a face, for example where one commonly labels at the tip of the
nose while the other at the bottom, introducing an entropy to the best prediction of the system.

By separating the different feature recognitions into their own models, we optimised the
quantities of data we have for each facial feature. In doing so we have made the problem roughly
9 times larger to represent, resulting in a more limited approach to the sizing of the network.

12‘Project Output Management System’ http://idl.alastairbreeze.com (2016)

17

Furthermore, storing the network takes roughly 457MB per feature, equating to 631MB when
loaded onto GPGPU memory, a considerably large amount and thus limiting the portability of
the solution. Loading all networks requires of order gigabytes of GPGPU memory, concluding
the system as inefficient for small devices like mobile phones.

C Approach

An Agile process model was adopted during the project, ensuring incremental developments
were made in a weekly cycle, whilst being able to responding to changes with ease. Progress
was evaluated in weekly meetings and goals were created that laid basis to the following week.

The modularity of the approach enabled layering of algorithms made easy. We were able to
quickly build a base object orientated module, with support for data management solutions. The
high complexity of Theano’s C++ compiler made for difficult debugging, but generally a well
documented and discussed field making for smooth development.

Our output management system12 allowed for fast system evaluation when testing. Funda-
mentally, it made possible fast analysis of multiple tests using algorithms like normal and random
grid search (Bergstra & Bengio 2012), enabling unprecedented parameter optimisation.

If we were to repeat the work, we would use a higher level ML library, allowing us to develop
more optimised, larger and more complex network architecture like GoogLeNet (Szegedy et al.
2014). Since the project, there have been higher level libraries released like Tensorflow Python
ML library13, built for high scaleability and with pre-optimised deep learning architectures.

VI CONCLUSIONS

We have shown that the CNN model to be a powerful approach for the facial keypoints problem
through meeting our requirements. We reflect back to our original project aims:

1. We validated the CNN model as an excellent approach to the facial keypoints problem.
2. We optimised a CNN model and created a system that reached 2nd place in the world on

the Kaggle challenge1(December 2015).
3. We explored new optimisations and visualisation techniques with promise for future re-

search avenues, including a novel extension upon the visualisation of a network.

To summarise, we have built upon the work of (Nouri 2014) and expanded a LeNet-5 model
(Lecun et al. 1998), increasing depths and breadth (Sutskever et al. 2013). We then explored
regularisation optimisations like the work of (Bottou 2012), dropout (Srivastava et al. 2014) to
pre-processing and augmentations (Hou et al. 2015) that allowed us to reach such low RMSE.

We explored novel ideas like prediction augmentations and visualisations. Our prediction
augmentations built on popular training augmentations (Krizhevsky et al. 2012), now applied to
the testing set, showing a minor improvement.

13TensorFlow: Large-Scale ML on Heterogeneous Distributed Systems http://download.tensorflow.org/

paper/whitepaper2015.pdf (2016)

18

We anticipate future research in the problem to continue improving the model, with aim to
deal with extreme examples the system incurs high error. In addition we would like to scale down
the network for use on smaller systems. Pre-training algorithms (Yamashita et al. 2015, Haavisto
2013) could be further investigated as they were deemed out of the projects scope.

Our novel heat-map extension has shown great promise for understanding our model. Future
work should also be to further validate the approach, by investigating the censoring extension
further and applied to other problems.

References

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J. et al. (2012), ‘Theano:
new features and speed improvements’, Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

Belhumeur, P. N., Jacobs, D. W., Kriegman, D. J. & Kumar, N. (2011), Localizing parts of
faces using a consensus of exemplars, in ‘In Proc. Int. Conf. Computer Vision and Pattern
Recognition’, IEEE.

Bergstra, J. & Bengio, Y. (2012), ‘Random search for hyper-parameter optimization’, J. Mach.
Learn. Res. 13, 281–305.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R. et al. (2010), Theano: a CPU and
GPU math expression compiler, in ‘In Proc. Python for Scientific Computing Conf.’.

Bottou, L. (2012), in ‘Neural Networks: Tricks of the Trade’, Vol. 7700 of Lecture Notes in
Computer Science.

Glorot, X. & Bengio, Y. (2010), Understanding the difficulty of training deep feedforward neural
networks, in ‘In Proc. Int. Conf. on Artificial Intelligence and Statistics’.

Haavisto, M. (2013), Deep generative models for facial keypoints detection, Bachelors thesis,
Lappeenranta University of Technology. unpublished.

Hinton, G. E. (2006), ‘Reducing the dimensionality of data with neural networks’, Science
313(5786), 504–507.

Hou, Q., Wang, J., Cheng, L. & Gong, Y. (2015), Facial landmark detection via cascade multi-
channel convolutional neural network, in ‘Int. Conf. on Image Processing’, IEEE.

Kimura, M., Yamashita, T., Yamauchi, Y. & Fujiyoshi*, H. (2015), Facial point detection based
on a convolutional neural network with optimal mini-batch procedure, in ‘Int. Conf. on
Image Processing’, IEEE.

Krizhevsky, A., Sutskever, I. & Hinton, G. E. (2012), Imagenet classification with deep convolu-
tional neural networks, in ‘Advances in Neural Information Processing Systems 25’, Curran
Associates, Inc., pp. 1097–1105.

Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998), ‘Gradient-based learning applied to
document recognition’, IEEE 86(11), 2278–2324.

19

Lee, H., Grosse, R., Ranganath, R. & Ng, A. Y. (2009), Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations, in ‘In Proc. Int. Conf. on
Machine Learning’, ACM, pp. 609–616.

Nielsen, M. A. (2015), Neural Networks and Deep Learning, 1st edn, Determination Press.

Nouri, D. (2014), ‘Using convolutional neural nets to detect facial keypoints tutorial’.
URL: http://danielnouri.org/notes/2014/12/17/using-convolutional-neural-nets-to-detect-
facial-keypoints-tutorial/ (Accessed: 2016)

Prechelt, L. (2012), Early stopping — but when?, in ‘Lecture Notes in Computer Science’,
Springer Science + Business Media, pp. 53–67.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S. et al. (2015), ‘ImageNet Large Scale
Visual Recognition Challenge’, Int. Journal of Computer Vision (IJCV) 115(3), 211–252.

Simonyan, K. & Zisserman, A. (2014), ‘Very deep convolutional networks for large-scale image
recognition’, CoRR abs/1409.1556.

Solomon, C. & Breckon, T. (2010), Fundamentals of Digital Image Processing: A Practical
Approach with Examples in Matlab, Wiley-Blackwell. ISBN-13: 978-0470844731.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. (2014), ‘Dropout:
A simple way to prevent neural networks from overfitting’, Journal of Machine Learning
Research 15, 1929–1958.

Sun, C., Paluri, M., Collobert, R., Nevatia, R. & Bourdev, L. D. (2015), ‘Pronet: Learning to
propose object-specific boxes for cascaded neural networks’, CoRR abs/1511.03776.

Sutskever, I., Martens, J., Dahl, G. E. & Hinton, G. E. (2013), On the importance of initialization
and momentum in deep learning, in ‘In Proc. Int. Conf. on Machine Learning’, AML,
pp. 1139–1147.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. et al. (2014), ‘Going deeper with convolu-
tions’, CoRR abs/1409.4842.

Szeliski, R. (2011), Computer Vision, Springer London.

Tomasi, C. & Manduchi, R. (2000), Bilateral filtering for gray and color images, in ‘Int. Conf.
on Computer Vision’, IEEE.

Weyand, T., Kostrikov, I. & Philbin, J. (2016), ‘Planet − photo geolocation with convolutional
neural networks’, CoRR abs/1602.05314.

Yamashita, T., Watasue, T., Yamauchi, Y. & Fujiyoshi*, H. (2015), Facial point detection using
convolutional neural network transferred from a heterogeneous task, in ‘Int. Conf. on Image
Processing’, IEEE.

Zeiler, M. D. & Fergus, R. (2013), ‘Visualizing and understanding convolutional networks’,
CoRR abs/1311.2901.

20

